Product-Icons

Stainless steel

Parts of stainless steel

Clamping point, slitted, round (one-piece clamp)

Clamp with round, slitted clamping points machined by cutting methods. For clamping, a screw thread is used to reduce the slit height and thereby the bore cross-section.

Clamping point, split, round (multi-piece clamp)

Clamps with round, split clamping points partially machined by cutting methods. For clamping, two screw threads are used to reduce the slit height and thereby the bore cross-section.

Clamping point, split, square (multi-piece clamp)

Clamp with round clamping points machined by cutting methods, without clamping slit. Grub screws act radially on the bore cross-section to exert the clamping action.

Clamping point, round (one-piece clamp)

Clamp with round clamping points machined by cutting methods, without clamping slit. Grub screws act radially on the bore cross-section to exert the clamping action.

Fastening lugs

Parts can be fastened to the fastening lugs of swivel clamps, or flat elements can rest on them. By combining two swivel clamps, it is possible to assemble a joint clamp.

Joint clamps

Joint clamps consist of two swivel clamps combined together. These can be swiveled by \pm 90 degrees at the clamping joint and can be fastened with the screw thread of the joint axis.

Parts with normal precision

Parts for applications in which shape, orientation, movement and position tolerances of up to 0.2 mm are generally required by the system setup.

Parts with high precision

Parts for applications in which shape, orientation, movement and position tolerances of no more than 0.05 mm are generally required by the system setup.