MULTI AXIS SYSTEM

NTN-SNR Linear Axis can be quickly combined with each other and integrated into existing systems. They bring additional advantages through their reliability and durability. NTN-SNR Engineering provides one-stop support for the design of individual Linear Axis and the development of system solutions.

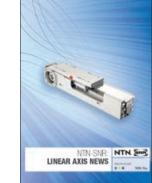
Through the optimal interaction of mechanics and electronics we offer short design times and optimized system configurations.

STANDARD COMBINATIONS

in the AXS, AXC and AXDL range

SPECIAL SOLUTIONS FOR CUSTOMER-SPECIFIC APPLICATIONS SPECIAL SOLUTIONS

Lifting axis with safety brakes and


LINEAR AXIS RANGE


Further information

- On our Website: www.ntn-snr.com
- 3D drawings on: www.cad.ntn-snr.info
- In our catalogues

Present all over the world

NTN-SNR ROULEMENTS - 1 rue des usines - 74000 Annecy RCS ANNECY B 325 821 072 - Code APE 2815Z - Code NACE 28.15

COMPACT AXIS

AXC SERIESSize 40, 60, 80, 100, 120

Modular design, system universally applicable as single-axis or in complex multi-axis systems

- Different guiding and drive options
- Belt drive in Omega design
- Long-life and low maintenance costs

AXF SERIES

Size 100

Based on the AXC series.

- Available with tooth belt and screw drive
 Specially developed to prevent the deposit of residues at the profile.
- Specifically optimized for food, pharmaceutical and semiconductor industries applications

PRECISION AXIS

AXBG SERIES Size 15, 20, 26, 33, 46, 55

- Extremely compact design and very rigid steel profile
- High positioning accuracy
- Suitable for applications clamped on one side

PARALLEL AXIS

AXDL SERIES

Size: 110, 160, 240

- Profile with high rigidity (especially with synchronous belt drive)
- Protection against contamination for guide and drive system
- Long-life and low maintenance costs

LINEAR TABLES AXIS

AXLT SERIES

Size: 155, 225, 325, 455

- Particularly suitable for high loads, especially torque loads
- Protected guidance and drive system by optional bellows
- Can be combined to create cross table variations

LINEAR MOTORS AXIS

AXLM SERIES

Size: 155, 225, 325

- High dynamics and high accuracy thanks to the linear motor
- Guidance: two parallel assembled linear guides
- High loads, especially torque loads

GANTRY, LIFTING AND TELESCOPIC AXIS

AXS SERIES

Telescopic axis

- For vertical and horizontal applications
- Suitable for use in confined installation space
- Velocitiy up to 10 m/s

Lifting axis

For weights over 1000 kg

Gantry axis

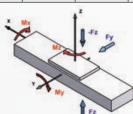
- Undivided lenght up to 10 m
- Tooth belt or rack and pinion drive

A WIDE RANGE OF LINEAR AXIS

NTN-SNR has been established in the linear technology market since 1985 and strives to offer a complete and competitive product range. NTN-SNR Linear Axis are developed and manufactured in our plant in Bielefeld. With a well-organised network of sales engineers and sales agents worldwide we can offer you dedicated and competent technical support at any time.

NTN-SNR Linear Axis are universally applicable modules that accommodate the steadily growing requirements for the automation of installation and manufacturing processes.

They are suitable for the most diverse applications in various industries: factory automation, machine tools, electrical engineering/electronic hardware, automotive industry, printing industry, special-


purpose machines, clean-room applications in the semiconductor industry, food industry.

The modular design of our axis allows a high flexibility and thus can fullfill almost every customer request. NTN-SNR linear axis can be quickly combined with each other and integrated into existing systems. It also means lower assembling costs for the end user.

TECHNICAL CHARACTERISTICS

		SIZE	GUIDING SYSTEM				DRIVING SYSTEM					«Max. Dynamic Load Capacity			MAX. DYNAMIC TORQUE (*MAX. DYNAMIC LOAD RATING)			PROTECTION VERSION			MAX LENGHT (meters in one part)
			B, C, D, E	L, M	Р	A, Y, Z	S	Т	G	М	Е	Fy[N]	Fz [N]	-Fz [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Cover strip	Bellows	Cover plate	MAX LENGHT (meters in one part)
AXC		40, 60, 80, 100, 120					S. Comments					10500	10500	10500	140	2150	2150	Х			8**
AXF	0.64	100				16						7000	7000	7000	200	325	325	Х			6
AXBG		15, 20, 26, 33, 46, 55										86,4*	86,4*	86,4*	3153*	3190*	3802*			Х	1,489
AXDL		110, 160, 240				16						12500	12500	12500	1050	2250	2250	Х			6,35
AXLM		155, 225, 325									1	37070	51270	22870	2350	5220	5220		X	Х	3,2
AXLT	Carrie Contraction of the Contra	155, 225, 325, 455										33000	33000	33000	5000	4700	4700		Х		3,2
AXS		110, 120, 200, 230, 240, 280, 460				- 10				0		29000	29000	29000	5500	7500	7500				10**

^{*} with 2 long carriages
** undivided

